مقدمة تأريخية :
أول من حل معادلة الدرجة الثالثة على الشكل كان سبيونيه دل فرو Scipione del Ferro في أوائل القرن السادس عشر ، لكنه احتفظ بالحل سراً إلى حين وفاته حيث أفشاه إلى تلميذه أنطونيو فوير والذي بدوره احتفظ بالطريقة سراً .
عام 1530 ، استلم نيكولو فونتانا المعروف بـتارتاغليا (Tartaglia) معادلتين تكعبيتين من رياضي آخر وأعلن أنه استطاع حلهما . لم يصدقه أنطونيو فوير وتحداه علناً في مسابقة تضمنت أن يضع أحد طرفي المسابقة مبلغاً من المال ويطلب من الطرف الآخر أن يقوم بحل مسائل معينة خلال 30 يوماً . وإذا حل المسألة يحصل على النقود . كان مسألة فوير هي حل المعادلة والتي نجح تارتاغليا في حلها ، ولكن فوير فشل في حل مسألة غريمه والتي كانت وخسر المسابقة .
طلب كاردانو Cardano من تارتاغليا الحل ، والذي أفشاه له مشفراً في قصيدة بشرط أن لا يكشف عنه لأي كان . التزم كاردانو بالوعد إلى أن عرف بحل فرو الغير منشور فحصل على مخرج من وعده بالقول أنه ينشر عمل فرو لا حل تارتاجليا ، وقام بنشرها في كتابه Ars Magna واشتهرت الطريقة باسم كاردانو ، مع أنه من المفروض أن تسمى بطريقة فرو-تارتاجليا
لقد ساهمت هذه الطريقة بدعم موقف الرياضيين الذين تحدثوا عن الذي كانوا يواجه بتشكيك هائل ، ففي كتابه الجبر ، تحدث رافاييل بومبلي في 1572 عن المعادلة ، حيث أن حل لهذه المعادلة ، ولكن باستخدام الصيغة التي سنثبتها في نهاية الموضوع فإن الحل الناتج ، وقد أثبت بومبلي أن :
، مما أعطى الأعداد المركبة بعداً واقعياً أكثر .
طريقة الحل
المــعادلة العامة للدرجة الثالثة هي . .:
والتي يمكن اختزالها إلى المعادلة
بتعويض على الشكل ( ) حيث يمكن إيجاد أن
نقوم الآن باستبدال آخر وهو ( x=u-v) ، وسنحصل على المعادلة :
والتي يمكن وضعها على الشكل التالي :
يمكننا أن نلاحظ أنه الطرف الأيسر يساوي الصفر إذا كان
و
من المعادلة الأولى يمكن أن نصل إلى أن
وبالتعويض في المعادلة الثانية نحصل على :
والتي يمكن وضعها على الصورة
المعادلة الأخيرة تمثل معادلة تربيعية في ( ) ، والتي يمكن حلها بسهولة بقانون المعادلات التربيعية :
وبالتعويض ، نوجد v :
لذا :
ويمكن الحصول على الحلول الأخرى بالقسمة على ( ) .
ملاحظة : يمكن اختصار الطريقة ، بتعويض على الشكل :
بعد القسمة على ( ) والمزيد من العمليات الجبرية نحصل على الصيغة العامة للحلول لأي معادلة :
مميز المعادلة التكعيبية
بالنظر إلى المعادلات السابقة يمكننا تعريف المميز بالشكل :
إذا كان المميز موجباً فالمعادلة له حل حقيقي وحلان مركبان مترافقان
إذا كان المميز سالباً فلها ثلاثة حلول حقيقية مختلفة
إذا كان المميز صفراً ، فلها حل حقيقي ثلاثي ، أو حلان : أحدهما مكرر
المـــراجع :
Michael Artin , Algebra Prentice Hall ,1991
J. H. Mathews and R.W. Howell , Complex Analysis for Mathematics and Engineering , 4th Ed. , Jones and Bartlett Publishers ,2000
وعد الزهراني s4
ليست هناك تعليقات:
إرسال تعليق